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2.2 The Web and HTTP

Until the early 1990s, the Internet was used primarily by researchers, academics,
and university students to log in to remote hosts, to transfer files from local hosts to
remote hosts and vice versa, to receive and send news, and to receive and send elec-
tronic mail. Although these applications were (and continue to be) extremely useful,
the Internet was essentially unknown outside of the academic and research commu-
nities. Then, in the early 1990s, a major new application arrived on the scene—the
World Wide Web [Berners-Lee 1994]. The Web was the first Internet application
that caught the general public’s eye. It dramatically changed how people interact
inside and outside their work environments. It elevated the Internet from just one of
many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike traditional broadcast
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radio and television, which force users to tune in when the content provider makes
the content available. In addition to being available on demand, the Web has many
other wonderful features that people love and cherish. It is enormously easy for any
individual to make information available over the Web—everyone can become a
publisher at extremely low cost. Hyperlinks and search engines help us navigate
through an ocean of information. Photos and videos stimulate our senses. Forms,
JavaScript, video, and many other devices enable us to interact with pages and sites.
And the Web and its protocols serve as a platform for YouTube, Web-based e-mail
(such as Gmail), and most mobile Internet applications, including Instagram and
Google Maps.

2.2.1 Overview of HTTP

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945], [RFC 7230] and [RFC 7540].
HTTP is implemented in two programs: a client program and a server program. The
client program and server program, executing on different end systems, talk to each
other by exchanging HTTP messages. HTTP defines the structure of these messages
and how the client and server exchange the messages. Before explaining HTTP in
detail, we should review some Web terminology.

A Web page (also called a document) consists of objects. An object is
simply a file—such as an HTML file, a JPEG image, a Javascrpt file, a CCS
style sheet file, or a video clip—that is addressable by a single URL. Most Web
pages consist of a base HTML file and several referenced objects. For example,
if a Web page contains HTML text and five JPEG images, then the Web page has
six objects: the base HTML file plus the five images. The base HTML file refer-
ences the other objects in the page with the objects” URLs. Each URL has two
components: the hostname of the server that houses the object and the object’s
path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www . someSchool . edu for a hostname and /someDepartment/picture.
gif for a path name. Because Web browsers (such as Internet Explorer and Chrome)
implement the client side of HTTP, in the context of the Web, we will use the words
browser and client interchangeably. Web servers, which implement the server side
of HTTP, house Web objects, each addressable by a URL. Popular Web servers
include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client
and server in detail later, but the general idea is illustrated in Figure 2.6. When a
user requests a Web page (for example, clicks on a hyperlink), the browser sends
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Figure 2.6 + HTTP requestresponse behavior

HTTP request messages for the objects in the page to the server. The server receives
the requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top
of UDP). The HTTP client first initiates a TCP connection with the server. Once the
connection is established, the browser and the server processes access TCP through
their socket interfaces. As described in Section 2.1, on the client side the socket inter-
face is the door between the client process and the TCP connection; on the server side
it is the door between the server process and the TCP connection. The client sends
HTTP request messages into its socket interface and receives HTTP response mes-
sages from its socket interface. Similarly, the HTTP server receives request messages
from its socket interface and sends response messages into its socket interface. Once
the client sends a message into its socket interface, the message is out of the client’s
hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP provides a
reliable data transfer service to HTTP. This implies that each HTTP request message
sent by a client process eventually arrives intact at the server; similarly, each HTTP
response message sent by the server process eventually arrives intact at the client.
Here we see one of the great advantages of a layered architecture—HTTP need not
worry about lost data or the details of how TCP recovers from loss or reordering of
data within the network. That is the job of TCP and the protocols in the lower layers
of the protocol stack.

It is important to note that the server sends requested files to clients without
storing any state information about the client. If a particular client asks for the same
object twice in a period of a few seconds, the server does not respond by saying
that it just served the object to the client; instead, the server resends the object, as
it has completely forgotten what it did earlier. Because an HTTP server maintains
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no information about the clients, HTTP is said to be a stateless protocol. We also
remark that the Web uses the client-server application architecture, as described in
Section 2.1. A Web server is always on, with a fixed IP address, and it services
requests from potentially millions of different browsers.

The original version of HTTP is called HTTP/1.0 and dates back to the early
1990’s [RFC 1945]. As of 2020, the majority of HTTP transactions take place over
HTTP/1.1 [RFEC 7230]. However, increasingly browsers and Web servers also sup-
port a new version of HTTP called HTTP/2 [RFC 7540]. At the end of this section,
we’ll provide an introduction to HTTP/2.

2.2.2 Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server respond-
ing to each of the requests. Depending on the application and on how the
application is being used, the series of requests may be made back-to-back, peri-
odically at regular intervals, or intermittently. When this client-server interaction
is taking place over TCP, the application developer needs to make an important
decision—should each request/response pair be sent over a separate TCP connec-
tion, or should all of the requests and their corresponding responses be sent over
the same TCP connection? In the former approach, the application is said to use
non-persistent connections; and in the latter approach, persistent connections. To
gain a deep understanding of this design issue, let’s examine the advantages and dis-
advantages of persistent connections in the context of a specific application, namely,
HTTP, which can use both non-persistent connections and persistent connections.
Although HTTP uses persistent connections in its default mode, HTTP clients and
servers can be configured to use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML
file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index
Here is what happens:
1. The HTTP client process initiates a TCP connection to the server
www . someSchool . edu on port number 80, which is the default port number

for HTTP. Associated with the TCP connection, there will be a socket at the
client and a socket at the server.
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2. The HTTP client sends an HTTP request message to the server via its socket.
The request message includes the path name /someDepartment/home
. index. (We will discuss HTTP messages in some detail below.)

3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file, and
finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two
different browsers may interpret (that is, display to the user) a Web page in some-
what different ways. HTTP has nothing to do with how a Web page is interpreted
by a client. The HTTP specifications ([RFC 1945] and [RFC 7540]) define only the
communication protocol between the client HTTP program and the server HTTP
program.

The steps above illustrate the use of non-persistent connections, where each
TCP connection is closed after the server sends the object—the connection does not
persist for other objects. HTTP/1.0 employes non-persistent TCP connections. Note
that each non-persistent TCP connection transports exactly one request message and
one response message. Thus, in this example, when a user requests the Web page, 11
TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure some
browsers to control the degree of parallelism. Browsers may open multiple TCP con-
nections and request different parts of the Web page over the multiple connections. As
we’ll see in the next chapter, the use of parallel connections shortens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing delays.
(These delays were discussed in Section 1.4.) Now consider what happens when
a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser to
initiate a TCP connection between the browser and the Web server; this involves
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Figure 2.7 + Back-ofthe-envelope calculation for the time needed
to request and receive an HTML file

a “three-way handshake”—the client sends a small TCP segment to the server, the
server acknowledges and responds with a small TCP segment, and, finally, the cli-
ent acknowledges back to the server. The first two parts of the three-way handshake
take one RTT. After completing the first two parts of the handshake, the client sends
the HTTP request message combined with the third part of the three-way handshake
(the acknowledgment) into the TCP connection. Once the request message arrives at
the server, the server sends the HTML file into the TCP connection. This HTTP
request/response eats up another RTT. Thus, roughly, the total response time is two
RTTs plus the transmission time at the server of the HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connection
must be established and maintained for each requested object. For each of these
connections, TCP buffers must be allocated and TCP variables must be kept in both
the client and server. This can place a significant burden on the Web server, which
may be serving requests from hundreds of different clients simultaneously. Second,
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as we just described, each object suffers a delivery delay of two RTTs—one RTT to
establish the TCP connection and one RTT to request and receive an object.

With HTTP/1.1 persistent connections, the server leaves the TCP connection
open after sending a response. Subsequent requests and responses between the same
client and server can be sent over the same connection. In particular, an entire Web
page (in the example above, the base HTML file and the 10 images) can be sent over
a single persistent TCP connection. Moreover, multiple Web pages residing on the
same server can be sent from the server to the same client over a single persistent
TCP connection. These requests for objects can be made back-to-back, without wait-
ing for replies to pending requests (pipelining). Typically, the HTTP server closes
a connection when it isn’t used for a certain time (a configurable timeout interval).
When the server receives the back-to-back requests, it sends the objects back-to-
back. The default mode of HTTP uses persistent connections with pipelining. We’ll
quantitatively compare the performance of non-persistent and persistent connections
in the homework problems of Chapters 2 and 3. You are also encouraged to see
[Heidemann 1997; Nielsen 1997; RFC 7540].

2.2.3 HTTP Message Format

The HTTP specifications [RFC 1945; RFC 7230; RFC 7540] include the definitions
of the HTTP message formats. There are two types of HTTP messages, request mes-
sages and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close

User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.
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The great majority of HTTP request messages use the GET method. The GET method
is used when the browser requests an object, with the requested object identified in
the URL field. In this example, the browser is requesting the object /somedir/
page.html. The version is self-explanatory; in this example, the browser imple-
ments version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host:
www . someschool . edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent: header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/5.0, a Firefox browser. This header line is useful because the server can actu-
ally send different versions of the same object to different types of user agents. (Each
of the versions is addressed by the same URL.) Finally, the Accept-language:
header indicates that the user prefers to receive a French version of the object, if such
an object exists on the server; otherwise, the server should send its default version.
The Accept-language: header is just one of many content negotiation headers
available in HTTP.

Having looked at an example, let’s now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body

Request line method |sp URL sp| Version |cr|If
header field name: |sp| value |cr| If
Header lines T 2
header field name: |sp| value |cr| If
Blank line———— cr | If
Entity body 1 J
T

Figure 2.8 + General format of an HTTP request message
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is empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page
depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily have to use the POST method. Instead, HTML forms often use
the GET method and include the inputted data (in the form fields) in the requested
URL. For example, if a form uses the GET method, has two fields, and the inputs to
the two fields are monkeys and bananas, then the URL will have the structure
www.somesite.com/animalsearch?monkeysé&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLS of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects
to Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK

Connection: close

Date: Tue, 18 Aug 2015 15:44:04 GMT

Server: Apache/2.2.3 (Cent0S)

Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an initial
status line, six header lines, and then the entity body. The entity body is the meat
of the message—it contains the requested object itself (represented by data data
data data data ...). The status line has three fields: the protocol version
field, a status code, and a corresponding status message. In this example, the status
line indicates that the server is using HTTP/1.1 and that everything is OK (that is, the
server has found, and is sending, the requested object).
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Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when
the object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends the
response message. The Server: header line indicates that the message was gener-
ated by an Apache Web server; it is analogous to the User-agent : header line in
the HTTP request message. The Last-Modified: header line indicates the time
and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both
in the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body
is HTML text. (The object type is officially indicated by the Content-Type:
header and not by the file extension.)

Having looked at an example, let’s now examine the general format of a response
message, which is shown in Figure 2.9. This general format of the response message
matches the previous example of a response message. Let’s say a few additional words
about status codes and their phrases. The status code and associated phrase indicate
the result of the request. Some common status codes and associated phrases include:

* 200 OK: Request succeeded and the information is returned in the response.

* 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.

Status line———— version |sp| statuscode |sp| phrase |cr| If
header field name: sp| value |cr| If
Header lines T r
header field name: [sp| value |cr| If
Blank line ——— cr | If
Entity body ] J
T i

Figure 2.9 + General format of an HTTP response message
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e 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

° 404 Not Found: The requested document does not exist on this server.

e 505 HTTP Version Not Supported: The requested HTTP protocol ver-
sion is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet gaia.cs.umass.edu 80

GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

(Press the carriage return twice after typing the last line.) This opens a TCP con-
nection to port 80 of the host gaia.cs.umass.edu and then sends the HTTP
request message. You should see a response message that includes the base HTML
file for the interactive homework problems for this textbook. If you’d rather just see
the HTTP message lines and not receive the object itself, replace GET with HEAD.

In this section, we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many,
many more header lines that can be inserted by browsers, Web servers, and net-
work cache servers. We have covered only a small number of the totality of header
lines. We’ll cover a few more below and another small number when we discuss
network Web caching in Section 2.2.5. A highly readable and comprehensive dis-
cussion of the HTTP protocol, including its headers and status codes, is given in
[Krishnamurthy 2001].

How does a browser decide which header lines to include in a request message?
How does a Web server decide which header lines to include in a response mes-
sage? A browser will generate header lines as a function of the browser type and
version, the user configuration of the browser and whether the browser currently
has a cached, but possibly out-of-date, version of the object. Web servers behave
similarly: There are different products, versions, and configurations, all of which
influence which header lines are included in response messages.

2.2.4 User-Server Interaction: Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for
a Web site to identify users, either because the server wishes to restrict user access

VideoNote

Using Wireshark to
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protocol


http://gaia.cs.umass.edu
http://gaia.cs.umass.edu
http://gaia.cs.umass.edu

136

CHAPTER 2 e APPLICATION LAYER

or because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep track
of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie
header line in the HTTP response message; (2) a cookie header line in the HTTP
request message; (3) a cookie file kept on the user’s end system and managed by
the user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10,
let’s walk through an example of how cookies work. Suppose Susan, who always

Client host Server host

j-

ebay: 8734

—— Server creates
ID 1678 for user
entry in backend

8 database
amazon: 1678
ebay: 8734 access
—— Cookie-specific ¢——»
action
One week later
access

amazon: 1678

—— Cookie-specific
action

ebay: 8734

Time Time

Key:

8 Cookie file

Figure 2.10 ¢ Keeping user state with cookies
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accesses the Web using Internet Explorer from her home PC, contacts Amazon.com
for the first time. Let us suppose that in the past she has already visited the eBay site.
When the request comes into the Amazon Web server, the server creates a unique
identification number and creates an entry in its back-end database that is indexed
by the identification number. The Amazon Web server then responds to Susan’s
browser, including in the HTTP response a Set-cookie: header, which contains
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the
Set-cookie: header. The browser then appends a line to the special cookie file
that it manages. This line includes the hostname of the server and the identification
number in the Set-cookie: header. Note that the cookie file already has an entry
for eBay, since Susan has visited that site in the past. As Susan continues to browse
the Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line that
includes the identification number in the HTTP request. Specifically, each of her
HTTP requests to the Amazon server includes the header line:

Cookie: 1678

In this manner, the Amazon server is able to track Susan’s activity at the Amazon
site. Although the Amazon Web site does not necessarily know Susan’s name, it
knows exactly which pages user 1678 visited, in which order, and at what times!
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a
list of all of Susan’s intended purchases, so that she can pay for them collectively at
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will con-
tinue to put the header line Cookie: 1678 in the request messages. Amazon also
recommends products to Susan based on Web pages she has visited at Amazon in
the past. If Susan also registers herself with Amazon—providing full name, e-mail
address, postal address, and credit card information—Amazon can then include this
information in its database, thereby associating Susan’s name with her identifica-
tion number (and all of the pages she has visited at the site in the past!). This is how
Amazon and other e-commerce sites provide “one-click shopping”—when Susan
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter
her name, credit card number, or address.

From this discussion, we see that cookies can be used to identify a user. The first
time a user visits a site, the user can provide a user identification (possibly his or her
name). During the subsequent sessions, the browser passes a cookie header to the
server, thereby identifying the user to the server. Cookies can thus be used to create
a user session layer on top of stateless HTTP. For example, when a user logs in to
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a Web-based e-mail application (such as Hotmail), the browser sends cookie infor-
mation to the server, permitting the server to identify the user throughout the user’s
session with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party.

2.2.5 Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk
storage and keeps copies of recently requested objects in this storage. As shown in
Figure 2.11, auser’s browser can be configured so that all of the user’s HTTP requests
are first directed to the Web cache [RFC 7234]. Once a browser is configured, each
browser request for an object is first directed to the Web cache. As an example,
suppose a browser is requesting the object http://www.someschool.edu/
campus .gif. Here is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an HTTP
request for the object to the Web cache.

2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to the
client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www . someschool.edu. The Web cache
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Figure 2.11 ¢ Clients requesting objects through a Web cache
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then sends an HTTP request for the object into the cache-to-server TCP connec-
tion. After receiving this request, the origin server sends the object within an
HTTP response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as Comcast) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if
the bottleneck bandwidth between the client and the origin server is much less than
the bottleneck bandwidth between the client and the cache. If there is a high-speed
connection between the client and the cache, as there often is, and if the cache has
the requested object, then the cache will be able to deliver the object rapidly to the
client. Second, as we will soon illustrate with an example, Web caches can sub-
stantially reduce traffic on an institution’s access link to the Internet. By reducing
traffic, the institution (for example, a company or a university) does not have to
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches
can substantially reduce Web traffic in the Internet as a whole, thereby improving
performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Internet
router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”

The total response time—that is, the time from the browser’s request of an
object until its receipt of the object—is the sum of the LAN delay, the access delay
(that is, the delay between the two routers), and the Internet delay. Let’s now do
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Figure 2.12 ¢ Bottleneck between an institutional network and the Internet

a very crude calculation to estimate this delay. The traffic intensity on the LAN
(see Section 1.4.2) is

(15 requests/sec) * (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) * (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly
something must be done.
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One possible solution is to increase the access rate from 15 Mbps to, say, 100 Mbps.
This will lower the traffic intensity on the access link to 0.15, which translates to neg-
ligible delays between the two routers. In this case, the total response time will roughly
be two seconds, that is, the Internet delay. But this solution also means that the institu-
tion must upgrade its access link from 15 Mbps to 100 Mbps, a costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illustrated
in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a cache—
typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s suppose
that the cache provides a hit rate of 0.4 for this institution. Because the clients and
the cache are connected to the same high-speed LAN, 40 percent of the requests will
be satisfied almost immediately, say, within 10 milliseconds, by the cache. Neverthe-
less, the remaining 60 percent of the requests still need to be satisfied by the origin
servers. But with only 60 percent of the requested objects passing through the access
link, the traffic intensity on the access link is reduced from 1.0 to 0.6. Typically, a

Origin servers

Public Internet

15 Mbps access link

Institutional
Institutional network cache

Figure 2.13 ¢ Adding a cache to the institutional network
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traffic intensity less than 0.8 corresponds to a small delay, say, tens of milliseconds,
on a 15 Mbps link. This delay is negligible compared with the two-second Internet
delay. Given these considerations, average delay therefore is

0.4 - (0.01 seconds) + 0.6+ (2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution
to upgrade its link to the Internet. The institution does, of course, have to purchase
and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are
increasingly playing an important role in the Internet. A CDN company installs many
geographically distributed caches throughout the Internet, thereby localizing much of
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs
(such as Google and Netflix). We will discuss CDNs in more detail in Section 2.6.

The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new
problem—the copy of an object residing in the cache may be stale. In other words,
the object housed in the Web server may have been modified since the copy was
cached at the client. Fortunately, HTTP has a mechanism that allows a cache to
verify that its objects are up to date. This mechanism is called the conditional GET
[RFC 7232]. An HTTP request message is a so-called conditional GET message if
(1) the request message uses the GET method and (2) the request message includes an
If-Modified-Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK

Date: Sat, 3 Oct 2015 15:39:29

Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 9 Sep 2015 09:23:24
Content-Type: image/gif

(data data data data data ...)
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The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the cache,
and the object is still in the cache. Since this object may have been modified at the
Web server in the past week, the cache performs an up-to-date check by issuing a
conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 9 Sep 2015 09:23:24

Note that the value of the Tf-modified-since: header line is exactly equal
to the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 9 Sep 2015 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 10 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a
response message but does not include the requested object in the response message.
Including the requested object would only waste bandwidth and increase user-
perceived response time, particularly if the object is large. Note that this last response
message has 304 Not Modified in the status line, which tells the cache that it
can go ahead and forward its (the proxy cache’s) cached copy of the object to the
requesting browser.

2.2.6 HTTP/2

HTTP/2 [REC 7540], standardized in 2015, was the first new version of HTTP since
HTTP/1.1, which was standardized in 1997. Since standardization, HTTP/2 has
taken off, with over 40% of the top 10 million websites supporting HTTP/2 in 2020
[W3Techs]. Most browsers—including Google Chrome, Internet Explorer, Safari,
Opera, and Firefox—also support HTTP/2.

The primary goals for HTTP/2 are to reduce perceived latency by enabling request
and response multiplexing over a single TCP connection, provide request prioritization
and server push, and provide efficient compression of HTTP header fields. HTTP/2
does not change HTTP methods, status codes, URLSs, or header fields. Instead, HTTP/2
changes how the data is formatted and transported between the client and server.
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To motivate the need for HTTP/2, recall that HTTP/1.1 uses persistent TCP
connections, allowing a Web page to be sent from server to client over a single TCP
connection. By having only one TCP connection per Web page, the number of sock-
ets at the server is reduced and each transported Web page gets a fair share of the
network bandwidth (as discussed below). But developers of Web browsers quickly
discovered that sending all the objects in a Web page over a single TCP connec-
tion has a Head of Line (HOL) blocking problem. To understand HOL blocking,
consider a Web page that includes an HTML base page, a large video clip near the
top of Web page, and many small objects below the video. Further suppose there is
a low-to-medium speed bottleneck link (for example, a low-speed wireless link) on
the path between server and client. Using a single TCP connection, the video clip
will take a long time to pass through the bottleneck link, while the small objects are
delayed as they wait behind the video clip; that is, the video clip at the head of the
line blocks the small objects behind it. HTTP/1.1 browsers typically work around this
problem by opening multiple parallel TCP connections, thereby having objects in the
same web page sent in parallel to the browser. This way, the small objects can arrive
at and be rendered in the browser much faster, thereby reducing user-perceived delay.

TCP congestion control, discussed in detail in Chapter 3, also provides brows-
ers an unintended incentive to use multiple parallel TCP connections rather than a
single persistent connection. Very roughly speaking, TCP congestion control aims to
give each TCP connection sharing a bottleneck link an equal share of the available
bandwidth of that link; so if there are n TCP connections operating over a bottleneck
link, then each connection approximately gets //nth of the bandwidth. By opening
multiple parallel TCP connections to transport a single Web page, the browser can
“cheat” and grab a larger portion of the link bandwidth. Many HTTP/1.1 browsers
open up to six parallel TCP connections not only to circumvent HOL blocking but
also to obtain more bandwidth.

One of the primary goals of HTTP/2 is to get rid of (or at least reduce the num-
ber of) parallel TCP connections for transporting a single Web page. This not only
reduces the number of sockets that need to be open and maintained at servers, but
also allows TCP congestion control to operate as intended. But with only one TCP
connection to transport a Web page, HTTP/2 requires carefully designed mecha-
nisms to avoid HOL blocking.

HTTP/2 Framing

The HTTP/2 solution for HOL blocking is to break each message into small frames, and
interleave the request and response messages on the same TCP connection. To under-
stand this, consider again the example of a Web page consisting of one large video clip
and, say, 8 smaller objects. Thus the server will receive 9 concurrent requests from any
browser wanting to see this Web page. For each of these requests, the server needs to
send 9 competing HTTP response messages to the browser. Suppose all frames are of
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fixed length, the video clip consists of 1000 frames, and each of the smaller objects
consists of two frames. With frame interleaving, after sending one frame from the
video clip, the first frames of each of the small objects are sent. Then after sending the
second frame of the video clip, the last frames of each of the small objects are sent.
Thus, all of the smaller objects are sent after sending a total of 18 frames. If interleav-
ing were not used, the smaller objects would be sent only after sending 1016 frames.
Thus the HTTP/2 framing mechanism can significantly decrease user-perceived delay.

The ability to break down an HTTP message into independent frames, inter-
leave them, and then reassemble them on the other end is the single most important
enhancement of HTTP/2. The framing is done by the framing sub-layer of the
HTTP/2 protocol. When a server wants to send an HTTP response, the response
is processed by the framing sub-layer, where it is broken down into frames. The
header field of the response becomes one frame, and the body of the message is
broken down into one for more additional frames. The frames of the response are
then interleaved by the framing sub-layer in the server with the frames of other
responses and sent over the single persistent TCP connection. As the frames arrive
at the client, they are first reassembled into the original response messages at the
framing sub-layer and then processed by the browser as usual. Similarly, a client’s
HTTP requests are broken into frames and interleaved.

In addition to breaking down each HTTP message into independent frames, the
framing sublayer also binary encodes the frames. Binary protocols are more efficient
to parse, lead to slightly smaller frames, and are less error-prone.

Response Message Prioritization and Server Pushing

Message prioritization allows developers to customize the relative priority of
requests to better optimize application performance. As we just learned, the fram-
ing sub-layer organizes messages into parallel streams of data destined to the same
requestor. When a client sends concurrent requests to a server, it can prioritize the
responses it is requesting by assigning a weight between 1 and 256 to each message.
The higher number indicates higher priority. Using these weights, the server can
send first the frames for the responses with the highest priority. In addition to this,
the client also states each message’s dependency on other messages by specifying
the ID of the message on which it depends.

Another feature of HTTP/2 is the ability for a server to send multiple responses
for a single client request. That is, in addition to the response to the original request,
the server can push additional objects to the client, without the client having to
request each one. This is possible since the HTML base page indicates the objects
that will be needed to fully render the Web page. So instead of waiting for the
HTTP requests for these objects, the server can analyze the HTML page, identify
the objects that are needed, and send them to the client before receiving explicit
requests for these objects. Server push eliminates the extra latency due to waiting
for the requests.
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HTTP/3

QUIC, discussed in Chapter 3, is a new “transport” protocol that is implemented in
the application layer over the bare-bones UDP protocol. QUIC has several features
that are desirable for HTTP, such as message multiplexing (interleaving), per-stream
flow control, and low-latency connection establishment. HTTP/3 is yet a new HTTP
protocol that is designed to operate over QUIC. As of 2020, HTTP/3 is described
in Internet drafts and has not yet been fully standardized. Many of the HTTP/2 fea-
tures (such as message interleaving) are subsumed by QUIC, allowing for a simpler,
streamlined design for HTTP/3.

2.3 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has
become more elaborate and powerful over the years. It remains one of the Internet’s
most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail,
electronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has
many powerful features, including messages with attachments, hyperlinks, HTML-
formatted text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these protocols,
let’s take a high-level view of the Internet mail system and its key components.

Figure 2.14 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the
Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose messages.
Examples of user agents for e-mail include Microsoft Outlook, Apple Mail, Web-
based Gmail, the Gmail App running in a smartphone, and so on. When Alice is
finished composing her message, her user agent sends the message to her mail server,
where the message is placed in the mail server’s outgoing message queue. When Bob
wants to read a message, his user agent retrieves the message from his mailbox in his
mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such
as Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages
and maintains the messages that have been sent to him. A typical message starts its
journey in the sender’s user agent, then travels to the sender’s mail server, and then
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Figure 2.14 + A high-level view of the Internet e-mail system

travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox.
When Bob wants to access the messages in his mailbox, the mail server containing
his mailbox authenticates Bob (with his username and password). Alice’s mail server
must also deal with failures in Bob’s mail server. If Alice’s server cannot deliver
mail to Bob’s server, Alice’s server holds the message in a message queue and
attempts to transfer the message later. Reattempts are often done every 30 minutes
or so; if there is no success after several days, the server removes the message and
notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail
server to the recipient’s mail server. As with most application-layer protocols, SMTP
has two sides: a client side, which executes on the sender’s mail server, and a server
side, which executes on the recipient’s mail server. Both the client and server sides of

W‘ User agent

User agent
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SMTP run on every mail server. When a mail server sends mail to other mail servers,
it acts as an SMTP client. When a mail server receives mail from other mail servers,
it acts as an SMTP server.

2.3.1 SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipients’
mail servers. SMTP is much older than HTTP. (The original SMTP RFC dates back
to 1982, and SMTP was around long before that.) Although SMTP has numerous
wonderful qualities, as evidenced by its ubiquity in the Internet, it is nevertheless
a legacy technology that possesses certain archaic characteristics. For example, it
restricts the body (not just the headers) of all mail messages to simple 7-bit ASCII.
This restriction made sense in the early 1980s when transmission capacity was scarce
and no one was e-mailing large attachments or large image, audio, or video files. But
today, in the multimedia era, the 7-bit ASCII restriction is a bit of a pain—it requires
binary multimedia data to be encoded to ASCII before being sent over SMTP; and it
requires the corresponding ASCII message to be decoded back to binary after SMTP
transport. Recall from Section 2.2 that HTTP does not require multimedia data to be
ASCII encoded before transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for
example, bob@someschool.edu), composes a message, and instructs the
user agent to send the message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in the
message queue. It opens a TCP connection to an SMTP server, running on Bob’s
mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail
server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.15.

It is important to observe that SMTP does not normally use intermediate mail serv-
ers for sending mail, even when the two mail servers are located at opposite ends of
the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis, the TCP
connection is a direct connection between the Hong Kong and St. Louis servers. In


mailto:bob@someschool.edu

2.3 o ELECTRONIC MAIL IN THE INTERNET

Alice’s Bob's
mail server mail server

wom | IR S
M

Alice’s
agent

Key:
DL Message aueue User mailbox

Figure 2.15 ¢ Alice sends a message to Bob

particular, if Bob’s mail server is down, the message remains in Alice’s mail server and
waits for a new attempt—the message does not get placed in some intermediate mail
server.

Let’s now take a closer look at how SMTP transfers a message from a send-
ing mail server to a receiving mail server. We will see that the SMTP proto-
col has many similarities with protocols that are used for face-to-face human
interaction. First, the client SMTP (running on the sending mail server host) has
TCP establish a connection to port 25 at the server SMTP (running on the receiv-
ing mail server host). If the server is down, the client tries again later. Once
this connection is established, the server and client perform some application-
layer handshaking—just as humans often introduce themselves before trans-
ferring information from one to another, SMTP clients and servers introduce
themselves before transferring information. During this SMTP handshaking phase,
the SMTP client indicates the e-mail address of the sender (the person who gener-
ated the message) and the e-mail address of the recipient. Once the SMTP client and
server have introduced themselves to each other, the client sends the message. SMTP
can count on the reliable data transfer service of TCP to get the message to the server
without errors. The client then repeats this process over the same TCP connection if
it has other messages to send to the server; otherwise, it instructs TCP to close the
connection.

Let’s next take a look at an example transcript of messages exchanged between an
SMTP client (C) and an SMTP server (S). The hostname of the clientis crepes. fr
and the hostname of the server is hamburger . edu. The ASCII text lines prefaced
with C: are exactly the lines the client sends into its TCP socket, and the ASCII text
lines prefaced with S : are exactly the lines the server sends into its TCP socket. The
following transcript begins as soon as the TCP connection is established.

S: 220 hamburger.edu
C: HELO crepes.fr
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250 Hello crepes.fr, pleased to meet you
MAIL FROM: <alice@crepes.fr>

250 alicelcrepes.fr ... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok
DATA

354 Enter mail, end with ”.” on a line by itself
Do you like ketchup?
How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

N OQOnOOOOQOnOn Qn On

In the example above, the client sends a message (“Do you like ketchup?
How about pickles?”) from mail server crepes.fr to mail server
hamburger.edu. As part of the dialogue, the client issued five commands:
HELO (an abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT.
These commands are self-explanatory. The client also sends a line consisting of a
single period, which indicates the end of the message to the server. (In ASCII jar-
gon, each message ends with CRLF . CRLF, where CR and LF stand for carriage
return and line feed, respectively.) The server issues replies to each command,
with each reply having a reply code and some (optional) English-language expla-
nation. We mention here that SMTP uses persistent connections: If the sending
mail server has several messages to send to the same receiving mail server, it can
send all of the messages over the same TCP connection. For each message, the
client begins the process with anew MAIL FROM: crepes. fr, designates the
end of message with an isolated period, and issues QUIT only after all messages
have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are
simply establishing a TCP connection between your local host and the mail server.
After typing this line, you should immediately receive the 220 reply from the
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended
that you do Programming Assignment 3 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP. It
will allow you to send an e-mail message to an arbitrary recipient via a local mail
server.
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2.3.2 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds
of peripheral header information at the top of the letter, such as Bob’s address, her
own return address, and the date. Similarly, when an e-mail message is sent from
one person to another, a header containing peripheral information precedes the
body of the message itself. This peripheral information is contained in a series of
header lines, which are defined in RFC 5322. The header lines and the body of the
message are separated by a blank line (that is, by CRLF). RFC 5322 specifies the
exact format for mail header lines as well as their semantic interpretations. As with
HTTP, each header line contains readable text, consisting of a keyword followed
by a colon followed by a value. Some of the keywords are required and others are
optional. Every header must have a From: header line and a To: header line;
a header may include a Subject: header line as well as other optional header
lines. It is important to note that these header lines are different from the SMTP
commands we studied in Section 2.3.1 (even though they contain some common
words such as “from” and “t0o”). The commands in that section were part of the
SMTP handshaking protocol; the header lines examined in this section are part of
the mail message itself.
A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII)
follows. You should use Telnet to send a message to a mail server that contains
some header lines, including the Subject: header line. To do this, issue telnet
serverName 25, asdiscussed in Section 2.3.1.

2.3.3 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the
message is placed in Bob’s mailbox. Given that Bob (the recipient) executes his user
agent on his local host (e.g., smartphone or PC), it is natural to consider placing a mail
server on his local host as well. With this approach, Alice’s mail server would dia-
logue directly with Bob’s PC. There is a problem with this approach, however. Recall
that a mail server manages mailboxes and runs the client and server sides of SMTP.
If Bob’s mail server were to reside on his local host, then Bob’s host would have to
remain always on, and connected to the Internet, in order to receive new mail, which
can arrive at any time. This is impractical for many Internet users. Instead, a typical
user runs a user agent on the local host but accesses its mailbox stored on an always-
on shared mail server. This mail server is shared with other users.
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Figure 2.16 ¢ E-mail protocols and their communicating entities

Now let’s consider the path an e-mail message takes when it is sent from Alice
to Bob. We just learned that at some point along the path the e-mail message needs to
be deposited in Bob’s mail server. This could be done simply by having Alice’s user
agent send the message directly to Bob’s mail server. However, typically the send-
er’s user agent does not dialogue directly with the recipient’s mail server. Instead, as
shown in Figure 2.16, Alice’s user agent uses SMTP or HTTP to deliver the e-mail
message into her mail server, then Alice’s mail server uses SMTP (as an SMTP cli-
ent) to relay the e-mail message to Bob’s mail server. Why the two-step procedure?
Primarily because without relaying through Alice’s mail server, Alice’s user agent
doesn’t have any recourse to an unreachable destination mail server. By having Alice
first deposit the e-mail in her own mail server, Alice’s mail server can repeatedly try
to send the message to Bob’s mail server, say every 30 minutes, until Bob’s mail
server becomes operational. (And if Alice’s mail server is down, then she has the
recourse of complaining to her system administrator!)

But there is still one missing piece to the puzzle! How does a recipient like Bob,
running a user agent on his local host, obtain his messages, which are sitting in a mail
server? Note that Bob’s user agent can’t use SMTP to obtain the messages because
obtaining the messages is a pull operation, whereas SMTP is a push protocol.

Today, there are two common ways for Bob to retrieve his e-mail from a mail
server. If Bob is using Web-based e-mail or a smartphone app (such as Gmail), then
the user agent will use HTTP to retrieve Bob’s e-mail. This case requires Bob’s mail
server to have an HTTP interface as well as an SMTP interface (to communicate with
Alice’s mail server). The alternative method, typically used with mail clients such
as Microsoft Outlook, is to use the Internet Mail Access Protocol (IMAP) defined
in RFC 3501. Both the HTTP and IMAP approaches allow Bob to manage folders,
maintained in Bob’s mail server. Bob can move messages into the folders he creates,
delete messages, mark messages as important, and so on.

2.4 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be iden-
tified by the names that appear on our birth certificates. We can be identified by
our social security numbers. We can be identified by our driver’s license numbers.
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Although each can be used to identify people, within a given context one identifier
may be more appropriate than another. For example, the computers at the IRS (the
infamous tax-collecting agency in the United States) prefer to use fixed-length social
security numbers rather than birth certificate names. On the other hand, ordinary
people prefer the more mnemonic birth certificate names rather than social security
numbers. (Indeed, can you imagine saying, “Hi. My name is 132-67-9875. Please
meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One
identifier for a host is its hostname. Hostnames—such as www . facebook.com,
www.google.com, gaia.cs.umass.edu—are mnemonic and are therefore
appreciated by humans. However, hostnames provide little, if any, information about
the location within the Internet of the host. (A hostname such as www.eurecom.
fr, which ends with the country code . fr, tells us that the host is probably in
France, but doesn’t say much more.) Furthermore, because hostnames can consist of
variable-length alphanumeric characters, they would be difficult to process by rout-
ers. For these reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a
few brief words about them now. An IP address consists of four bytes and has a
rigid hierarchical structure. An IP address looks like 121.7.106. 83, where each
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP
address is hierarchical because as we scan the address from left to right, we obtain
more and more specific information about where the host is located in the Internet
(that is, within which network, in the network of networks). Similarly, when we scan
a postal address from bottom to top, we obtain more and more specific information
about where the addressee is located.

2.4.1 Services Provided by DNS

We have just seen that there are two ways to identify a host—by a hostname and
by an IP address. People prefer the more mnemonic hostname identifier, while
routers prefer fixed-length, hierarchically structured IP addresses. In order to rec-
oncile these preferences, we need a directory service that translates hostnames to
IP addresses. This is the main task of the Internet’s domain name system (DNS).
The DNS is (1) a distributed database implemented in a hierarchy of DNS servers,
and (2) an application-layer protocol that allows hosts to query the distributed
database. The DNS servers are often UNIX machines running the Berkeley Inter-
net Name Domain (BIND) software [BIND 2020]. The DNS protocol runs over
UDP and uses port 53.

DNS is commonly employed by other application-layer protocols, including
HTTP and SMTP, to translate user-supplied hostnames to IP addresses. As an exam-
ple, consider what happens when a browser (that is, an HTTP client), running on
some user’s host, requests the URL www. someschool.edu/index.html. In
order for the user’s host to be able to send an HTTP request message to the Web
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server www . someschool . edu, the user’s host must first obtain the IP address of
www . someschool .edu. This is done as follows.

b

The same user machine runs the client side of the DNS application.

The browser extracts the hostname, www . someschool .edu, from the URL
and passes the hostname to the client side of the DNS application.

The DNS client sends a query containing the hostname to a DNS server.

The DNS client eventually receives a reply, which includes the IP address for
the hostname.

Once the browser receives the IP address from DNS, it can initiate a TCP con-
nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes
substantial—to the Internet applications that use it. Fortunately, as we discuss below,
the desired IP address is often cached in a “nearby” DNS server, which helps to
reduce DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-

names to IP addresses:

Host aliasing. A host with a complicated hostname can have one or more
alias names. For example, a hostname such as relayl.west-coast
.enterprise.com could have, say, two aliases such as enterprise.com
and www.enterprise.com. In this case, the hostname relayl
.wWwest-coast.enterprise.comissaid to be a canonical hostname. Alias
hostnames, when present, are typically more mnemonic than canonical host-
names. DNS can be invoked by an application to obtain the canonical hostname
for a supplied alias hostname as well as the IP address of the host.

Mail server aliasing. For obvious reasons, it is highly desirable that e-mail
addresses be mnemonic. For example, if Bob has an account with Yahoo Mail,
Bob’s e-mail address might be as simple as bob@yahoo.com. However, the
hostname of the Yahoo mail server is more complicated and much less mnemonic
than simply yahoo . com (for example, the canonical hostname might be some-
thing like relayl.west-coast.yahoo.com). DNS can be invoked by a
mail application to obtain the canonical hostname for a supplied alias hostname
as well as the IP address of the host. In fact, the MX record (see below) permits a
company’s mail server and Web server to have identical (aliased) hostnames; for
example, a company’s Web server and mail server can both be called enter-
prise.com.

Load distribution. DNS is also used to perform load distribution among repli-
cated servers, such as replicated Web servers. Busy sites, such as cnn . com, are
replicated over multiple servers, with each server running on a different end sys-
tem and each having a different IP address. For replicated Web servers, a set of I[P
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.9 &L  PRINCIPLES IN PRACTICE
DNS: CRITICAL NETWORK FUNCTIONS VIA THE CLIENT-SERVER PARADIGM

Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since it

(1) runs between communicating end systems using the clientserver paradigm and

(2) relies on an underlying end-to-end transport protocol to transfer DNS messages between
communicating end systems. In another sense, however, the role of the DNS is quite differ-
ent from Web, file transfer, and e-mail applications. Unlike these applications, the DNS is
not an application with which a user directly interacts. Instead, the DNS provides a core
Internet function—namely, translating hostnames to their underlying IP addresses, for user
applications and other software in the Internet. We noted in Section 1.2 that much of the
complexity in the Internet architecture is located at the “edges” of the network. The DNS,
which implements the critical name-to-address translation process using clients and servers
located at the edge of the network, is yet another example of that design philosophy.

addresses is thus associated with one alias hostname. The DNS database contains
this set of IP addresses. When clients make a DNS query for a name mapped to a
set of addresses, the server responds with the entire set of IP addresses, but rotates
the ordering of the addresses within each reply. Because a client typically sends
its HTTP request message to the IP address that is listed first in the set, DNS rota-
tion distributes the traffic among the replicated servers. DNS rotation is also used
for e-mail so that multiple mail servers can have the same alias name. Also, con-
tent distribution companies such as Akamai have used DNS in more sophisticated
ways [Dilley 2002] to provide Web content distribution (see Section 2.6.3).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several addi-
tional RFCs. It is a complex system, and we only touch upon key aspects of its
operation here. The interested reader is referred to these RFCs and the book by Albitz
and Liu [Albitz 1993]; see also the retrospective paper [Mockapetris 1988], which
provides a nice description of the what and why of DNS, and [Mockapetris 2005].
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