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This handout provides you with a quick review of the main concepts and equations you
studied in signal analysis, such as Fourier series, Fourier transform, average value, and average
power.

1 Basic Signals

The following figures show some basic signals you need to know, along with their notation. For
example, x(t) = A rect(t/τ) is a single rectangular pulse of width τ , while x(t) = A ∆(t/τ) is
a single triangular pulse of width 2τ . All these signals are aperiodic signals. However, we can
build periodic signals by repeating the aperiodic pulse shape every period of time T (the period
T should not to be confused with the pulse width τ). An example is shown later in Exercise 1,
where we repeat the rectangular pulse to obtain a corresponding periodic signal. The repT {.}
operator is used to indicate repetition every T , hence the signal in Exercise 1 is expressed as
x(t) = repT {A rect(t/τ)}.
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2 Fourier Series

The idea behind Fourier series is that you can express any periodic signal x(t) as the sum of
an infinite number of sinusoidal (cosine/sine) functions. There are three ways of doing that:
complex exponential form, trigonometric form and compact form. The complex exponential
form is the one used heavily in this course.

2.1 Complex exponential Fourier series

Any periodic signal x(t) with period T can be expanded into complex exponential Fourier series
as follows:

x(t) =
∞∑

n=−∞
αn ejnω0t , ω0 =

2π

T

where,

αn =
1

T

∫ t0+T

t0

x(t)e−jnω0tdt, n = 0, ±1, ±2, ±3, . . .

For real-valued x(t) we have α−n = α∗
n (i.e., |α−n| = |αn| , ∠α−n = −∠αn), n = 0, 1, 2, 3, . . .

2.2 Trigonometric Fourier series

Any periodic signal x(t) with period T can be expanded into trigonometric Fourier series as:

x(t) =
a0
2

+
∞∑
n=1

[an cos (nω0t) + bn sin (nω0t)] , ω0 =
2π

T

where,

an = 2 Re {αn} =
2

T

∫ t0+T

t0

x(t) cos (nω0t) dt , n = 0, 1, 2, 3, . . .

bn = −2 Im {αn} =
2

T

∫ t0+T

t0

x(t) sin (nω0t) dt , n = 0, 1, 2, 3, . . .

Notice that,

αn =
an
2

− j
bn
2

, n = 0, 1, 2, 3, . . .

2.3 Compact Fourier series

Any periodic signal x(t) with period T can be expanded into compact Fourier series as:

x(t) =
c0
2

+

∞∑
n=1

cn cos (nω0t− θn), ω0 =
2π

T

where,
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cn =
√

a2n + b2n = 2 |αn| , n = 0, 1, 2, 3, . . .

θn = tan−1

(
bn
an

)
= tan−1

(
−Im {αn}
Re {αn}

)
= −∠αn, n = 0, 1, 2, 3, . . .

Notice that,

an = cn cos (θn) = 2 Re {αn} , n = 0, 1, 2, 3, . . .

bn = cn sin (θn) = −2 Im {αn} , n = 0, 1, 2, 3, . . .

Not only do you need to know the above equations, you also need to be able to use them to
evaluate the Fourier series coefficients for any periodic function x(t). To practice your skills, the
exercises below show some periodic signals x(t) with the corresponding Fourier series coefficients.
Make sure you can obtain them yourself.

Exercise 1. For the signal x(t) shown below, evaluate and sketch the Fourier series co-
efficients (complex exponential, trigonometric, and compact forms). In addition, evaluate the
signal bandwidth, average value (DC value), and average power.

t

x(t) = repT {A rect (t/τ)}

−2T −T −τ/2 0 τ/2 T 2T

A

Answers. (Notice that m(t)pk = A and also m(t)pk−pk = A)
Fourier series coefficients:

αn =
Aτ

T
sinc

(nωoτ

2π

)
, |αn| =

Aτ

T

∣∣∣sinc(nωoτ

2π

)∣∣∣ , ∠αn = 0◦ or 180◦

an =
2Aτ

T
sinc

(nωoτ

2π

)
, bn = 0

cn =
2Aτ

T

∣∣∣sinc(nωoτ

2π

)∣∣∣ , θn = 0◦ or 180◦

Bandwidth:
Bx(t) = 1/τ

DC value:
x(t) = Aτ/T

Average Power:
Px = x2(t) = A2τ/T
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Exercise 2. Repeat the above exercise for the signal x(t) shown below.

t

x(t) = repT {2a rect (2t/T )} − a

−2T −T

−T/2

−T/4 0 T/4

T/2

T 2T

a

−a

Answers. (Notice that m(t)pk = a, which is different than m(t)pk−pk = 2a)
Fourier series coefficients:

α0 = 0, αn = a sinc
(n
2

)
,

|α0| = 0, |αn| = a
∣∣∣sinc(n

2

)∣∣∣ ,∠αn = 0◦ or 180◦

a0 = 0, b0 = 0, an = 2a sinc
(n
2

)
, bn = 0

c0 = 0, cn = 2a
∣∣∣sinc(n

2

)∣∣∣ , θn = 0◦ or 180◦

Bandwidth:
Bx(t) = 2/T

DC value:
x(t) = 0

Average Power:
Px = x2(t) = 2a2 − a2 = a2

Exercise 3. Repeat the above exercise for the signal x(t) shown below.

t

x(t) = repT {A ∆(t/τ)}

−2T −T −τ 0 τ T 2T

A

Answers. (Notice that m(t)pk = A and also m(t)pk−pk = A)
Fourier series coefficients:

αn =
Aτ

T
sinc2

(nωoτ

2π

)
, |αn| =

Aτ

T
sinc2

(nωoτ

2π

)
, ∠αn = 0◦

an =
2Aτ

T
sinc2

(nωoτ

2π

)
, bn = 0
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cn =
2Aτ

T
sinc2

(nωoτ

2π

)
, θn = 0◦

Bandwidth:
Bx(t) = 1/τ

DC value:
x(t) = Aτ/T

Average Power:
Px = x2(t) = 2A2τ/3T

Exercise 4. Repeat the above exercise for the signal x(t) shown below.

t

x(t) = repT {2a ∆(2t/T )} − a

−2T −T

−T/2

0

T/2

T 2T

a

−a

Answers. (Notice that m(t)pk = a, which is different than m(t)pk−pk = 2a)
Fourier series coefficients:

α0 = 0, αn = a sinc2
(n
2

)

|α0| = 0, | αn| = a sinc2
(n
2

)
, ∠αn = 0◦

a0 = 0, b0 = 0, an = 2a sinc2
(n
2

)
, bn = 0

c0 = 0, cn = 2a sinc2
(n
2

)
, θn = 0◦

Bandwidth:
Bx(t) = 2/T

DC value:
x(t) = 0

Average Power:
Px = x2(t) = 4a2/3− a2 = a2/3
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Exercise 5. Repeat the above exercise for the signal x(t) shown below.

t

x(t) = repT {a saw (t/τ)}

−2T −T T 2T

−τ/2

0
τ/2

a

−a

Answers. (Notice that m(t)pk = a, which is different than m(t)pk−pk = 2a)
Fourier series coefficients:

α0 = 0, αn =
−j2a

nωoT

[
sinc

(nωoτ

2π

)
− cos

(nωoτ

2

)]
,

|α0| = 0, |αn| =
2a

nωoT

∣∣∣sinc(nωoτ

2π

)
− cos

(nωoτ

2

)∣∣∣ , ∠αn = ±90◦

a0 = 0, b0 = 0, an = 0, bn =
4a

nωoT

[
sinc

(nωoτ

2π

)
− cos

(nωoτ

2

)]

c0 = 0, cn =
4a

nωoT

∣∣∣sinc(nωoτ

2π

)
− cos

(nωoτ

2

)∣∣∣ , θn = ∓90◦

Bandwidth:
Bx(t) = 3/τ

DC value:
x(t) = 0

Average Power:
Px = x2(t) = a2τ/3T

Exercise 6. Repeat the above exercise for the signal x(t) shown below.

t
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Answers. (Notice that m(t)pk = a, which is different than m(t)pk−pk = 2a)
Fourier series coefficients:

α0 = 0, αn =
ja cos(nπ)

nπ

|α0| = 0, |αn| =
∣∣∣∣a cos(nπ)nπ

∣∣∣∣ , ∠αn = ±90◦

a0 = 0, b0 = 0, an = 0, bn =
−2a cos(nπ)

nπ

c0 = 0, cn =

∣∣∣∣2a cos(nπ)nπ

∣∣∣∣ , θn = ∓90◦

Bandwidth:
Bx(t) = 3/T

DC value:
x(t) = 0

Average Power:
Px = x2(t) = a2/3

Exercise 7. Repeat the above exercise for the signal x(t) shown below.

t

x(t) = a cos (ω0t)

−2T −T −T/2 0 T/2 T 2T

a

−a

Answers. (Notice that m(t)pk = a, which is different than m(t)pk−pk = 2a)
Fourier series coefficients:

α1 =
a

2
, α−1 =

a

2
, αn = 0, n ̸= ±1

|α1| =
a

2
, ∠α1 = 0◦, |α−1| =

a

2
, ∠α−1 = 0◦, |αn| = 0, ∠αn = 0◦, n ̸= 1

a0 = 0, bn = 0, a1 = a, an = 0, n ̸= 1

c0 = 0, c1 = a, θ1 = 0◦, cn = 0, θn = 0◦, n ̸= 1
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Bandwidth:
Bx(t) = 1/T

DC value:
x(t) = 0

Average Power:
Px = x2(t) = a2/2

Exercise 8. Repeat the above exercise for the signal x(t) shown below.

t

x(t) = a sin (ω0t)

−2T −T T 2T0 T/2

a

−a

Answers. (Notice that m(t)pk = a, which is different than m(t)pk−pk = 2a)
Fourier series coefficients:

α1 = −j
a

2
, α−1 = j

a

2
, αn = 0, n ̸= ±1

|α1| =
a

2
, ∠α1 = −90◦, |α−1| =

a

2
, ∠α−1 = 90◦, |αn| = 0, ∠αn = 0◦, n ̸= 1

a0 = 0, an = 0, b1 = a, bn = 0, n ̸= 1

c0 = 0, c1 = a, θ1 = 90◦, cn = 0, θn = 0◦, n ̸= 1

Bandwidth:
Bx(t) = 1/T

DC value:
x(t) = 0

Average Power:
Px = x2(t) = a2/2

Notice that the fundamental frequency of any of the above periodic signals is ω0 =
2π
T rad/s

or f0 = 1
T Hz, and the fundamental frequency f0 should not be confused with the bandwidth

Bx(t) of the signal.
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Please note that the complex Fourier series coefficients αn’s represent the Fourier spec-
trum of the signal x(t), or simply, its spectrum. Since these coefficients are complex numbers,
they generate two spectra: the magnitude spectrum |αn| and the phase spectrum ∠αn

of x(t). The magnitude spectrum can also be drawn using the compact coefficients cn since
cn = 2 |αn|. The cn spectrum, however, is called the one-sided magnitude spectrum (be-
cause n ≥ 0), while the |αn| spectrum is called the two-sided magnitude spectrum (because
−∞ < n < +∞).

3 Fourier Transform

The Fourier transform is a mathematical tool that converts a signal x(t) from time domain into
frequency domain as X(ω). The inverse Fourier transform does the opposite.

3.1 Definition

The Fourier transform of a general signal x(t), whether periodic or aperiodic, is given by:

X(ω) = F {x(t)} =

∫ ∞

−∞
x(t)e−jωtdt

and the inverse Fourier transform is:

x(t) = F−1 {X(ω)} =
1

2π

∫ ∞

−∞
X(ω)ejωtdω

The Fourier transform X(ω) represents the Fourier spectrum density of the signal x(t).
Notice that the Fourier spectrum density of periodic signals consists of a group of impulses δ(ω)’s,
while the Fourier spectrum density of aperiodic signals is a smooth continuous curve. This is
due to the fact that periodic signals are actually the sum of an infinite number of sinusoidals.

3.2 Properties of Fourier Transform

When evaluating Fourier transform, we typically avoid using the original integral and rely on
using tables instead. See Table 1 (Selected Fourier Transform Pairs) and Table 2 (Properties of
Fourier Transform). Make sure you memorize both tables.

Notice that all Fourier transforms in Table 1 are given in terms of angular frequency ω
(rad/s) instead of ordinary frequency f (Hz). This is the convention we will use in this class.
There is a factor of 2π that you have to be aware of between the Fourier transform X(ω) and
X(f). For example, F {x(t) = a cos (ω0t)} = X(ω) = πaδ (ω − ω0) + πaδ (ω + ω0). However,
F {x(t) = a cos (ω0t)} = X(f) = a

2δ (f − f0) +
a
2δ (f + f0). Similarly, F {x(t) = rect(t)} =

X(ω) = sinc
(

ω
2π

)
, but F {x(t) = rect(t)} = X(f) = sinc(f). This difference is due to the fact

that ω = 2πf .
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x(t) X(ω) = F{x(t)}
a cos (ω0t) πaδ (ω − ωo) + πaδ (ω + ωo)

a sin (ω0t) −jπaδ (ω − ωo) + jπaδ (ω + ωo)

e±jω0t 2πδ(ω ∓ ω0)

rect (t) sinc
(

ω
2π

)
rect

(
t
τ

)
τ sinc

(
ωτ
2π

)
∆(t) sinc2

(
ω
2π

)
∆
(
t
τ

)
τ sinc2

(
ωτ
2π

)
sinc(t) = sin(πt)

πt rect
(

ω
2π

)
sinc

(
t
2π

)
2π rect (ω)

saw
(
t
τ

) −2j
ω

[
sinc

(
ωτ
2π

)
− cos

(
ωτ
2

)]
δ(t), Dirac delta function 1

1 2πδ(ω)

repT {p(t)}, periodic
∑∞

n=−∞ 2παnδ (ω − nωo)

repT {δ(t)} =
∑∞

n=−∞ δ(t− nT )
∑∞

n=−∞
2π
T δ (ω − nωo) = ω0repω0

{δ(ω)}
repT

{
A rect

(
t
τ

)} ∑∞
n=−∞ 2πAτ

T sinc
(
nωoτ
2π

)
δ (ω − nωo)

repT
{
A ∆

(
t
τ

)} ∑∞
n=−∞ 2πAτ

T sinc2
(
nωoτ
2π

)
δ (ω − nωo)

repT
{
a saw

(
t
T

)} ∑∞
n=−∞ j2πa cos(nπ)

nπ δ (ω − nωo)

u(t), unit step function πδ(ω) + 1
jω

sgn(t) = u(t)− u(−t) 2
jω

e−t2/(2σ2) σ
√
2π e−σ2ω2/2

e−a|t|, a > 0 2a
a2+ω2

Property x(t) X(ω) = F {x(t)}
Linearity (superposition) ax(t) + by(t) aX(ω) + bY (ω)

Complex conjugate x∗(t) X∗(−ω)

Symmetry
xeven(t)
xodd(t)

Xeven(ω), real
Xodd(ω), imaginary

Duality X(t) 2πx(−ω)

Time scaling (reciprocal spreading) x
(
t
τ

)
|τ | X(τω)

Time inversion (time reversal) x(−t) X(−ω)

Time shift (time delay/advance) x (t± t0) X(ω)e±jωt0

Frequency shift x(t)e±jω0t X (ω ∓ ω0)

Modulation
x (t) cos (ω0t) =
x(t)
2

(
ejω0t + e−jω0t

) 1
2X (ω − ω0) +

1
2X (ω + ω0)

Time differentiation dn

dtnx(t) (jω)n X(ω)

Time integration
∫ t
−∞ x(τ)dτ X(ω)

jω + πX(0) δ(ω)

Time convolution x(t)⊛ y(t) X(ω)Y (ω)

Frequency convolution x(t)y(t) 1
2π (X(ω)⊛ Y (ω))
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4 Energy and Power Spectral Densities

4.1 Energy Spectral Density

The energy spectral density (ESD) of a general signal x(t) is defined as:

ESD = Ψx(ω) = |X(ω)|2

The ESD is a function that describes the relative amount of energy of a given signal versus
frequency. The total area under the ESD is the total energy in the signal x(t), denoted by Ex.

4.2 Parseval’s Theorem

The total energy in a general signal x(t) can be calculated either from time-domain or frequency-
domain as follows:

Ex =

∞∫
−∞

|x(t)|2 dt = 1

2π

∞∫
−∞

|X(ω)|2 dω

4.3 Power Spectral Density

The power spectral density (PSD) of a general signal x(t) is defined as:

PSD = Sx(ω) = lim
T→∞

1

T
|XT (ω)|2

The PSD is a function that describes the relative amount of power of a given signal versus
frequency. The total area under the PSD is the average power in the signal x(t), denoted by Px.

Notice that the PSD of periodic functions consists of a group of impulses δ(ω)’s, while the
PSD of aperiodic functions is a smooth continuous curve. This is due to the fact that periodic
functions are actually the sum of an infinite number of sinusoidal functions.

Most of the signals we consider in communications theory exist for a long time, i.e., they are
power signals. Some of them are periodic and some are aperiodic. Power signals have a PSD,
not an ESD (their ESD is infinite).

4.4 Average Power

The average power in a general signal x(t) can be calculated either from time-domain or
frequency-domain as follows:

Px = lim
T→∞

1

T

T/2∫
−T/2

|x(t)|2 dt = 1

2π

∞∫
−∞

Sx(ω)dω
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5 Average and RMS versus Average Power

Consider a continuous signal x(t) and a discrete version of such signal xn with a sampling period
∆t (the sampling frequency is given by fs =

1
∆t).

5.1 Average Value

The average value (or DC value or DC offset or DC shift) of the signal x(t) is given by:

DC = x(t) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)dt = α0

and for the sampled version of x(t), where we have N samples ∆t apart, the average value is:

xn =
1

N∆t

N∑
n=1

xn∆t =
1

N

N∑
n=1

xn, ∆t =
1

fs

5.2 RMS Value

The root mean square (rms) value of the signal x(t) is given by:

xrms =

√√√√ lim
T→∞

1

T

∫ T
2

−T
2

x2(t)dt

and for the sampled version of x(t), where we have N samples ∆t apart, the rms value is:

xrms =

√√√√ 1

N∆t

N∑
n=1

x2n∆t =

√√√√ 1

N

N∑
n=1

x2n, ∆t =
1

fs

5.3 Average Power

As explained earlier, the average power in the signal x(t) can be calculated using:

Px = lim
T→∞

1

T

∫ T
2

−T
2

|x(t)|2 dt

and for the sampled version, xn, the average power is:

Px =
1

N

N∑
n=1

x2n

Notice that the square of the rms value is actually the average power in the signal. This is
because we are assuming a normalized load impedance of 1 W. Hence, the average power in x (t)
is:

Px =
x2rms

R
=

x2rms

1
= x2rms
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6 Practice

Problem 1. For the signal m(t) shown below, evaluate and sketch the Fourier transform, then
evaluate the signal bandwidth, average value (DC value) and average power.

t (seconds)

m(t)

0 0.25 1 1.25 2 2.25

1

0

Hint. You can solve this problem by calculating integrals from scratch, but this is not
recommended since this is time consuming. Rather, use Fourier transform properties, and notice
that this signal is a time shifted version of the signal in Exercise 1. You just need to know the
effect of time shift on each of the answers.

Problem 2. For the signal m(t) shown below, evaluate and sketch the Fourier transform,
then evaluate the signal bandwidth, average value (DC value) and average power.

t (seconds)

m(t)

−0.5

0

0.5

1 2 3 4 5

2

−1

Hint. Use Fourier transform properties, and notice that this is a DC shifted version of the
signal in Exercise 2. You just need to know how a DC shift affects each of the answers. You can
use orthogonality to help you evaluate average power.

Problem 3. For the signal m(t) shown below, evaluate and sketch the Fourier transform,
then evaluate the signal bandwidth, average value (DC value) and average power.

t (seconds)

m(t)

−1 0 1 2 3 4 5

2
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Hint. Use Fourier transform properties. This signal can be thought of as a special case of
the signal in Exercise 3, where τ is set to T/2. Alternatively, the signal m(t) can be thought of
as a DC shifted version of the signal in Exercise 4. In the latter case, direct use of orthogonality
is allowed for power calculations.

Problem 4. For the signal m(t) shown below, evaluate and sketch the Fourier transform,
then evaluate the signal bandwidth, average value (DC value) and average power.

t

x(t) = −repT {a saw (t/T )}

−2T −T T 2T

−T/2 0 T/2

a

−a

Hint. This is a vertically inverted version of the signal in Exercise 6. Inversion is simply
multiplying the signal by −1. Use this fact and Fourier transform properties to quickly evaluate
the answers.
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